

Airborne LiDAR and Multi-Spectral Imagery

Flathead Basin, MT

Russell Faux, Principal Watershed Sciences, Inc. 517 SW 2nd Street, Suite 400 Corvallis, OR 97333 541-752-1204

Presentation Overview

Basic LiDAR Concepts
 Flathead Basin Project
 LiDAR Applications

Part 1: Light Detection and Ranging (LiDAR)

In its most basic form, LiDAR Data are just points

Airborne LIDAR systems employ technologies that include...

LiDAR Systems/Hardware

Airborne Platforms

Airborne LiDAR Systems

Ground GPS Systems

In its most basic form, LiDAR Data are just points

Ponderosa Pine and Juniper

Multiple Laser Returns are Apparent

First Return Second Return Third Return Fourth Return Ground Points

Penetration

LiDAR data are better when there are a lot of points...

Going from Points to Surfaces... Modeling Data

- Data clouds are massive
- TINs from data clouds
- GRIDs from TINs (Interpolated Surface)
- GRIDS are smaller and easier to work with

All Returns Colored by Intensity

Dayville, OR

Classifying Ground Returns LiDAR Returns 2-meter x-section

default

ground classified

Going from Points to Surfaces... Modeling Data (1 meter resolution) Looking Upstream of Black Canyon Creek Confluence

10-Meter DEM versus 1-meter DEM

Data Accuracy...

- <u>Relative:</u> A measure of system calibration computed as the divergence between points from different flight lines
- <u>Absolute:</u> Compare known real-time kinematic (RTK) ground survey points to closest ground-classified laser point.
- <u>Classification:</u> A measure of accuracy of the resulting digital terrain model considering ground point classification and ground hit density.

Assessing Absolute Accuracy:

Measured as the deviation between ground survey and laser point data

- Assessed on open, hard surfaces
- Measured across multiple flight lines
- Statistical robustness of assessment (sample size & distribution)

Relative Accuracy Example

- A measure of system calibration
- Measured as the divergence of points from different flight lines

Relative Accuracy: Another Example

Classification Accuracy

- Vegetation
- Bare Earth
- Water
- Buildings

- Visual QA/QC Checks on DTM
 - Anomalies in the terrain model
 - Comparison to air photos
- Comparison with ground check points
- Delineation of Areas of Low Confidence

Ground points

Above ground points

Classification Accuracy Assessment

- Visual QA/QC Checks on DTM
 - Anomalies in the terrain model
 - Comparison to air photos
- Comparison with ground check points
 - FEMA: 20 distributed checkpoints on prevailing land cover types.
 - Independent of other check points.
- Delineation of Areas of Low Confidence
 - Ground return density versus slope.

Part 2: Flathead Basin

Data Acquisition (303,040 acres)

Airborne LiDAR (Sept 22-29, 2009) 8 pulses/m^{2 –} Swan Lake 4 pulses/m² - Remaining Areas

<u>4-band Multispectral Imagery</u> (Sept 23-25, 2009) 1- ft GSD

<u>Ground Control Survey</u> Control Monuments Land Cover Check Points Pre-marks for Imagery

Flathead Basin Project Achieved Pulse Densities

Ground Point Density = $1.55/m^2$ (0.14/ft²) First Return Density = $4.93/m^2$ (0.46/ft²)

Flathead Basin Project Achieved Pulse Densities

Ground Point Density = $1.55/m^2$ (0.14/ft²) First Return Density = $4.93/m^2$ (0.46/ft²)

Flathead Basin Project

Assessed Accuracies

Surface Type	Sample Size	RMSE
Hard-surface (WSI)	4229	0.118 ft (0.036 m)
Asphalt (RDG)	168	0.141 ft (0.043 m)
Cattails (RDG)	27	1.037 ft (0.316 m)
Concrete (RDG)	42	0.226 ft (0.069 m)
Cultivated Field (RDG)	92	0.164 ft (0.050 m)
Drain Rock (RDG)	28	0.178 ft (0.054 m)
Grass (RDG)	49	0.282 ft (0.086 m)
Grass, Lawn (RDG)	109	0.161 ft (0.049 m)
Gravel (RDG)	174	0.178 ft (0.054 m)
Natural Field (RDG)	110	0.392 ft (0.120 m)
Packed Dirt (RDG)	57	0.204 ft (0.062 m)
Shrubs (RDG)	22	0.570 ft (0.174 m)

Absolute Accuracy LiDAR Surface Deviation from RTK Survey (ft)

Flathead Basin Project: Data Deliverables

Point Data:	All Returns (Las v. 1.2 format) Ground Classified Returns (Las v. 1.2 format)
• Vector Data: •	AOI boundary and tiling area, (ESRI Geodatabase) 2 ft. contours, (ESRI Geodatabase) Breaklines (ESRI Geodatabase) DEM Tiling Index, (ESRI Geodatabase) Orthoimagery Tiling Index, (ESRI Geodatabase) Orthoimagery Flight Exposures (ESRI Geodatabase) Updated Roads Layer (ESRI geodatabase)
• Raster Data:	 Bare earth DEM, 3-ft, ESRI Grid Bare earth DEM with breaklines enforced, 6-ft, ESRI Grid
Watershed Sci	iences

Breaklines collected for the Flathead study area

Feature

Hydro Break Earthen Hydro Canal Hydro Dam Concrete Hydro Dam Earthen Hydro Ditch Bottom Hydro Ditch Top Hydro Stream Bank Top Hydro Stream Interm Hydro Stream Perennial Hydro Stream Disappear PNT Hydro Waterbody Trans Airport Runway Trans Airport Taxiway Trans Road Paved Edge Trans Road Unpaved Edge Trans Road Private Paved Edge Trans Road Private Unpaved Edge **Breakline Misc**

Implementation Aid ground classificaton Soft Breakline Soft Breakline Provided as feature Soft Breakline Hard Breakline Hard Breakline Hard Breakline Hard Breakline Hard Breakline Hard Breakline Aid ground classification

Breakline Implementation

Bottom of channel

Stream center (break)

Flathead Basin LiDAR

Flathead River east of Kalispell, MT; 1-meter Bare Earth DEM

Flathead Basin Remote Sensing

Flathead Basin Remote Sensing – Fly Thru

Flathead Basin Remote Sensing

Looking West Southwest at the town of Polson, MT; Point Cloud Assigned RGB

Flathead Basin Remote Sensing

Looking Southeast at the City of Whitefish, MT; Point Cloud Assigned RGB

Part 3: LiDAR Applications

Resulting data classifications are ground, buildings and vegetation.

Classification of Buildings/Structures

С

Watershed Sciences

and the second second

Flathead Basin Remote Sensing

Removal of Buildings/Structures

Removal of Buildings/Structures

- Industrial areas often have semi-trucks and trains.
- Care must be taken to not classify trucks as buildings.

Vegetation Characterization

LiDAR point cloud provides the basis for deriving vegetation metrics to characterize structure at the <u>stand</u> or <u>tree approximate</u> scale.

Swan Lake; Flathead Basin

Automated Data Strata Sampling

WSI LiDAR Feature Extraction Tool: Inhouse tool developed to generate vegetation metrics and other feature classifications. Capable of generating over 114 metrics/data strata.

put/Output Paths Tools Convert Sample	Normalize Intensity Test	Wave Form
Vegetation Data Strata		
This tool samples LiDAR points to create dat parameters. Reads LAS files with accurate g		
🔲 1st Returns Only 📄 All Returns	Output Raster Reso	olution (meters):
Vegetation Rasters:	Satistical Sampling Reso	lution (meters):
📃 Canopy Height	Vegetation Strata Height (meters):	
Understory Canopy Cover	Maximum Vegetation Height (meters):	
🔲 Canopy Slope	Non-Vegetation Ra	sters:
📃 Canopy Curvature	DTM	
🔲 Canopy Density and Transparancy	🔲 Ground Dens	ity
Intensity Metrics	Point Density	
Height Statistics	Building Footprints	
	🔲 Site Quality	
🔲 Voxel Analysis		
Sample Plot Data		
Sample plot metrics for principal component a		Start at Tree:
files, tree locations and ID in sequential order. IDs. Creates ascii plot data output.	Enter start and end tree	Stop at Tree:

Common Vegetation Metrics:

PCA selection of data strata can vary depending on the land cover and analysis objectives.

- <u>Vegetation Height (P90)</u>: Height at which 90% of LiDAR returns fall below.
- <u>Stem Density:</u> # of local maxima per cell. Relative measure of density between forest stands.
- <u>Standard Deviation of Height:</u> Std deviation of local maxima per cell.
- <u>Canopy Cover:</u> % total returns over returns above a specified threshold.
- <u>Canopy Height Model</u>: Point elevations normalize to ground elevations.
- <u>LiDAR Intensities</u>: Normalized 1st return intensities.

Stand Delineation

Bare Earth

Highest Hit

Stand Delineation

Dominant Groupings

- Conifer
- Deciduous
- Harvest (<1 year)
- Shrub/Non-Overstory

Individual Tree Metrics: Height

Individual tree height is a critical in variable in forest biomass, carbon stocks, and growth and site productivity.

DBH is not measured directly, but highly correlated w/ LiDAR derived tree height and crown width

Individual Height Accuracies (Anderson et. al.):

LiDAR @ 6 pulses/sq	<u>m:</u>
Ponderosa Pine:	-0.43 ±0.13 m
Douglas Fir:	-1.05 ±0.41 m

Field Techniques: -0.27 ±0.27 m

Digital Terrain Accuracy Directly Impacts on Individual Tree Height Measurements.

Tree Level Segmentation

Conifers have Distinguishable Crowns Multiple-Methods for Segmentation:

- Inverse Canopy Height Model
- Physical Similarity Delineations
- Object Oriented/Rules Based

Ongoing Developments: Stand Level Classification

89% Coniferous 6% Deciduous 5% No Overstory 0% Roads 0% Streams **0% Buildings** Average tree height = 14.5 m 90th Percentile Ht = 34.0 m 10th Percentile Ht = 3.1 mRelative Height = 16.2 m Local height maxima = 40.9 m Average Crown Width = 6.6 m Std = 9.9 mCanopy density = 95% Stem Count = 5 Stem Density = 22.5 stems/acre Elevation = 531 mSlope = 43.1% Aspect = 215 SW

Objectified 30-meter Resolution Data Cube

Stream/Wetland Delineation

Other Common Applications

- Landslide Detection and Mapping
- Flood Hazard Mapping
- Volume Calculation/Change Detection

Mount St. Helens Dome Growth over 20 Day Period - 2004

September 24

September 30

October 14

Thank you

Montana DNRC

Lake and Kalispell Counties

Polson, Kalispell, Whitefish

Project Team: River Design Group 3Di West

Contact Information

Russ Faux 541-752-1204 faux@watershedsciences.com

